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The Hamiltonian of the ions in liquid sodium is obtained from pseudopotential 
perturbation theory, and the free energy is evaluated using the Gibbs-Bogoliubov 
variational technique together with a hard sphere reference system. The free energy of the 
vapour is obtained by supposing i t  to be a monomer-dimer mixture. The two descriptions 
are then combined to provide a theory of coexistence. This yields satisfactory results for 
the various thermodynamic properties up to a few hundred degrees short of the critical 
temperature. 

KEY WORDS: Monomers, dimers, hard spheres, pseudopotential. 

1 INTRODUCTION 

The problem of describing theoretically the liquid-vapour transition is 
more difficult for metals than for such simple non-metallic fluids as 
argon. This is because, in the case of metals, radical changes in the 
electronic states, from phase to phase, must be considered. Near the 
critical point, the character of the electronic states are not well- 
understood, but at lower temperatures and pressures, the situation is 
clearer and it is on this region that we focus. 

The nearly free electron (NFE) theory of metals provides us with a 
description of ions, weakly coupled through the electron gas, but 
accompanied by a large volume-dependent but position-independent 
potential energy. On melting, the methods of classical liquid theory can 
be applied and, in the following, the Gibbs-Bogoliubov variational 
method, based on a hard sphere reference system,' is used. 
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182 S. M. OSMAN AND W. H. YOUNG 

Metallic vapours at low pressures are often regarded as monatomic 
and ideal but, in some cases, there is experimental evidence’ that this 
view is not wholly correct. A macroscopic analysis3 of the thermo- 
dynamic data for sodium, in particular, suggests dimerisation and we 
adopt this model below. 

In the present work, we combine the above descriptions to obtain an 
account of the liquid-vapour transition in sodium. In an earlier paper4 
on this problem, the liquid was described essentially as indicated above 
but the vapour was taken to be an ideal monomer and a satisfactory 
account of coexistence was thus afforded up to about the 1 atm. boiling 
point (1 156 K). With our improved picture, involving dimerisation, we 
can expect to obtain some success at higher temperatures and pressures 
and the degree to which this is achieved will be examined. 

2 THE LIQUID 

The theory here is widely known’ so we provide below merely the basic 
formalism. Consider a liquid metal, of atomic mass M ,  valency z, and 
electron-ion pseudopotential v(q), held at temperature T and specific 
volume R, (so that the free-electron Fermi wave index is k, = 
(3n’~/C2,)’~~). Then the Helmholtz free energy per atom can be written 

F ,  = Fh, + F,, + F ,  + F z  + F ,  + E, (1 )  
Here the first five contributions on the right of this equation, which we 
discuss shortly, give the free energy relative to a dispersed system of ion 
cores and valence electrons. The addition of E,, the valence electron 
binding energy per atom, creates a new zero of energy namely that of 
the monatomic vapour and this is a very convenient reference system 
when we come later to consider real (not necessarily monatomic) 
vapours. 

Returning now to the first five contributions, we have 
Fh, = - k ,  TIln[en,(Mk,T/2nh2)3/2] + S,/k,) (2) 

F,, = (m)kF - - k , -  0.0474 { ’ (J 
- 0.01 55 In k, - $(zk, T/kF)’bez/czo (3) 

F ,  =a /Q (4) 

F ,  = - (6&~)’ /~(1  - 0 . 2 ~  + 0.1q2)(1 + 2t/-’~’/Q:’~ (6) 

and we comment briefly on each of these contributions. 
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LIQUID-VAPOUR COEXISTENCE 183 

Fhsr given by Eq. (2), is the free energy of the hard sphere reference 
system. The first contribution is the ideal gas value and the second is the 
excess due to the finite size of the ions. As the notation implies, this is 
entropic and in the Percus-Yevick approximation5 (compressibility 
route) used here, we have 

(7) 

Here q is the packing fraction, related to the effective hard sphere 
diameter r~ by q = na3/6Q. Equation (3) gives the electron gas free 
energy, the correlation energy being in Nozieres-Pines approximation6 
and the final non-degeneracy term being of Sommerfeld form. Equation 
(4) corresponds to the expectation value with respect to the electron gas 
of the non-Coulombic portions of the pseudopotentials. Equation ( 5 )  
arises from the indirect free-electron mediated interactions between the 
ions, the dielectric function ~ ( q )  being in Ichimaru-Utsumi form' and 
S,,(q) being the analytically available5 Percus-Yevick hard sphere 
reference structure factor. Finally, Eq. (6) corresponds to the direct, 
Coulombic, interactions between the ions, averaged over the associated 
Percus-Yevick hard sphere system.' 

We next turn to the pseudopotential description. For v(q), in (5 ) ,  we 
take the empty core form' 

Sq/k ,  = In( 1 - q )  - 3q(2 - q)/2( 1 - q)2 

v(q) = - (4nze2/q2) cos qr, (8) 
where z is the valency (= 1 for Na) and we can choose rc numerically to 
give a satisfactory description of the entropy (see below). In simple 
conformity with (8), we might take, for use in Eq. (4), 

c( = lim[v(q) + 4nze2/q2] = 2nze2rf 
but it is known'"," to be necessary to improve upon this description 
for accurate results when volume is an important variable. This is 
certainly the case in the present study and we adopt here the empirical 
expression 

(9) 

Here Rb is a reference specific volume and a, b and c are constants with 
dimensions of energies. This form was used successfully by the present 
authors12 in a preliminary study of Na and shown, a posteriori, to have 
a physical interpretation at least for this case. We will return to it again 
in Section 5. 

Finally, for given T and R,, we choose the associated hard sphere 
diameter using the Gibbs-Bogoliubov condition 

( d F l / W T , . ,  = 0 (10) 
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Once this condition is imposed, the entropy estimate becomes 

S. M. OSMAN AND W. H. YOUNG 

SI = - (aF , /aT) , ,  = S,, + S,, (1 1) 

where s h ,  = (3 )kB - Fh,/T and S,, = (7ck,/k,)2Tze2/a, arise from Eqs 
( 2 )  and ( 3 )  respectively. 

When the parametrisation is decided, we are in a position to calculate 
F,( T,  S Z , )  and thence the other thermodynamic properties of interest. 
For example, the pressure is given by 

PI = - (dF , /dQ, ) ,  ( 1 2 )  

(1 3) 

and the Gibbs free energy by 

GI = F ,  + P,R, 

3 THEVAPOUR 

We next consider the vapour and suppose it to be a monomer-dimer 
mixture. The formalism is well documented, for example, by Landau 
and Li f t~hi tz '~  and Ru~hbrooke '~  and we will merely summarise below 
the argument and main results. 

Suppose there are N ,  monomers and N ,  dimers so that the total 
number of atoms, in single or combined forms, is N = N ,  + 2 N , ;  it will 
be convenient below to speak, where necessary, of the N original atoms, 
to distinguish them from the N ,  in monomeric form. We begin the 
analysis by noting that the Helmholtz free energy per original atom can 
be written as 

F = F ,  + F ,  

where the F i  are calculated as though each species separately occupied 
the total volume I/. The terms of this equation can be expressed in the 
form 

(14) 

Fi = - ( N , / N ) k , T  ln(eZi/Ni) (15) 

where the Z i  are discussed in more detail next. 

have 
For the monomer gas (of N ,  atoms occupying the volume V ) ,  we 

Z ,  = g ( ~ k , ~ / 2 7 C h 2 ) 3 / 2 ~  = i 1 v (16) 

where g (= 2 in the case of Na) accounts for spin and orbital angular 
momentum degeneracy. Also, as in Section 2, we measure the energy 
relative to the electronic ground state. The alternative expression 
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LIQUID-VAPOUR COEXISTENCE 185 

involving il has been introduced because it is useful later to isolate the 
volume dependence. 

For the dimer gas contribution, we have 

z,  = (2MkB T/2Zh2)3'2 V eXp(&,/kB T)Zrotvib [2 I/ ( 1  7) 
where here, it will be noted, that the particle mass has been doubled, the 
spin degeneracy factor has been dropped, eb is the diatomic binding 
energy and a factor has been included to describe molecular rotation 
and vibration. The latter, in high temperature approximations, to be 
justified later, is written explicitly as 

'rotvib = ( T/28rnt)( T / e v i b )  (18) 

Here 

or,< = h2/k ,MR2,  dvib = hw/kB (19) 

where, R is the bond length and o is the angular frequency of vibration. 
In Eq. (18), the division of the rotational factor by 2 occurs because the 
atoms within the molecule are identical. 

From the above equations, other thermodynamic quantities may be 
calculated and, in particular, the pressure is 

P = - (aF/aT) ,  = C Pi; 

G = F + P V / N  = -1 ( N i / N ) k B T  ln(Z,/N,) 

Pi = N i k , T / V  (20) 
and the Gibbs free energy per original atom is 

(21) 

We may use Eqs (20) and (21) to impose the condition for chemical 
equilibrium, which is (dG/dNi )P ,T  subject to the constraint that N i  + 
2 N 2  = N remains constant. Thus, we obtain N ,  = AZ, and N ,  = AZ2, 
with A chosen to conserve original atom number. On introducing 
SZ, = V / N ,  the volume per original atom, we can write these results 
conveniently for our purpose as 

N , / N  = 1(',SZ,, N J N  = 125,Q, (22) 
and 

( A i l  + 2A25,)R, = 1 (23) 

In terms of the optimum 1, we find from Eqs (20) and (22) that the 
pressure at equilibrium is 

p ,  = ( A i l  + A252)k,T 

G ,  = k,T In I. 

(24) 

while, from (21) and (22), 

(25)  
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186 S. M. OSMAN AND W. H.  YOUNG 

In the above formalism, electronic excitations have been neglected 
because, compared with the temperatures of interest, the energies 
involved are very high. For example, first ionisation potentials are of 
order several eV and 1 eV = 1.2 x lo4 K. Such temperatures are very 
much higher than the critical temperatures, at least for those metals (the 
alkalis, mercury) under active experimental investigation at present. 

4 LlQU I D-VAPOU R COEXISTENCE 

In Section 2 we considered a theory of the thermodynamic properties of 
a liquid metal and in Section 3 a theory for the corresponding vapour 
regarded as a monomer-dimer mixture. We must now consider the 
circumstances under which the two phases can coexist. The conditions 
for coexistence are that the pressures and Gibbs free energies of the 
phases are equal. Explicitly, for given T ,  we need to equate Eqs (1 2) and 
(24) to obtain 

P,(Q,) = P V ( Q V )  (26) 

G,(Q,) = G,(Qv) (27) 

and Eqs (13) and (25) to obtain 

Then these two equations must be solved for the unknowns R, and 0,. 
The solution of Eqs (26) and (27), for a specified T ,  can be 

conveniently obtained by the following search procedure: 

i) choose a numerical trial value for R, 
ii) calculate P,(R,) from Eq. (12) 
iii) calculate G,(R,) from Eq. (13) 
iv) equate G,(R,) and G,(R,) and find I. from Eq. (25) 
v) use II to find P,(R,) from Eq. (24) and Q, from Eq. (23) 
vi) compare the P,(R,) and P,(R,) found at stages (ii), (v) 
vii) revise R, at (i) until pressures agree at (vi). 

This final R, at (vii) and the corresponding R, obtained at stage (v) are 
the required solutions for temperature T.  

5 PARAMETREATION 

So far, the description has been rather general, but now we focus on the 
special case of Na and consider its parametrisation. At low tempera- 
tures (in practice below about 1600 K), the liquid state properties are 
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LIQUID-VAPOUR COEXISTENCE 187 

Table 1 

Symbol Meaning Value Comment 

Parameter input to calculations. 

Z 

r r  
a 
b 

6 ,  

R 

C 

‘ b  

w 

Valency 
Pseudopotential core radius 
Characterise mean value of 
pseudopotential core 

3s atomic binding energy 
diatomic binding energy 
diatomic bond length 
diatomic vibrational frequency 

(cf. Eq. (9)) 

1 

1.789 eV 
0.397 eV (b) 
0.187 eV 
5.344 eV (c) 
0.7424eV (d) 
3.079 8, (d) 
158 cm-’ (d) 

0.91 A (a) 

(a) provides liquid state entropy fit over measured range (up to 

(b) provides liquid state Helmholtz free energy fit using Eq. (9) with 
- 1400 K); 

a reference volume of fib = 51.49 A 3  (the measured 1 atm. boiling 
value); 

measured value of 5.138 eV; 
(c) fitted to vapour pressure at 1200 K; differs slightly (see text) from 

(d) measured spectroscopically by Kusch and Hessel.” 

insensitive to vapour state considerations and thus this phase can be 
parametrised without reference to the other. For the vapour, the 
parameters can all be spectroscopically determined. Once the un- 
knowns in each phase have been assigned, the main interest then lies in 
our ability to describe the higher temperature coexistence characteris- 
tics. We show, in Table 1 the parameters we use and, in the following 
subsections we elaborate on the reasons for these choices. 

(i) Liquid state 

We need to specify the pseudopotential parameters appearing in Eqs (8) 
and (9). Addressing first Eq. (8), we take z = 1 ,  for monovalency, and 
choose r ,  = 0.91 A, as this gives a good fit to the entropy over the 
measured range (Figure 1). Here, in making the fit, we have used the 
observed densities as input information. It will be noted that S l ,  as given 
by Eq. (1 1)  is independent of Eq. (4), so this exercise can be carried out 
without reference to the parametrisation of o! (see Eq. (9)). 

Turning next to Eq. (9), we took the reference volume to be 
R, = 51.49 A3, which corresponds to the observed 1 atm. boiling 
point” and, after some trial and error, the values of Q, b and c shown in 
Table 1.  This choice may be viewed? as a fit (again at the observed 

t Any fit to the free energy must be done very accurately as we then require valid 
volume derivatives to obtain the pressure; we took care that this was so. 
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188 S. M. OSMAN AND W. H. YOUNG 

-bS I kg > 

T I K  I 
4 0 0  600 8 0 0  1000 i z a o  1400  

Figure I Excess entropy AS per atom of liquid Na over the observed range (vapour 
pressure negligible). The excess entropy is defined as the absolute value less that of a 
corresponding structureless gas occupying the same space; by the present theory, it is 
given by (cf. Eqs (2), (7) and (11)) Sq + .Ye#. To obtain the excess entropy per atom 
relative to an ideal Na monomer vapour, add k ,  In 2 (cf. Eqs (15), (16)). 

densities) over the measured range of the Helmholtz free energy; this is 
shown in Figure 2, where theory and experiment are identical to 
graphical accuracy. As expected (recall the remarks preceding Eq. ( S ) ) ,  
LY is quite close numerically to 2nz2e2rf, but it is in fact its small 
departure from this value which is crucial for an accurate calculation of 
the pressure. 

It is also convenient at this point to deal with the choice, in Eq. (l), of 
E, which, in the present context, represents the 3s valence electron 
binding energy. Experimentally, this is accurately known and given by 
5.138eV. However, we find it appropriate to change this value to 
5.344 eV, thus obtaining the observed saturation vapour pressure at 
1200 K. The essential point here is that this adjustment compensates for 
the small errors in the liquid state formalism (the first five terms of 
Eq. (1)) in calculating absolute free energies. 

(ii) Vapour state 

The above mention of the ionisation potential E, for atomic sodium 
recalls our general statement at the end of Section 3 that electronic 
excitation and ionisation can be neglected. In the present case, T,  “N 
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LIQUID-VAPOUR COEXISTENCE 189 

Figure 2 Free energy per atom of liquid sodium over the observed range (in which, 
because of the low vapour pressure, the Helmholtz and Gibbs values essentially 
coincide). The theoretical and experimental results are indistinguishable to graphical 
accuracy when one makes the reasonable choice of 6.457 eV for the lattice energy per 
atom at absolute zero. 

2500 K, so since E, = 5.138 eV, we find E,/kBT,  z 24, which is suitably 
high. In fact, our neglect of this effect is in agreement with the recent 
detailed study by Vargaftik and Voljak.’ 

The parameters appearing in Eqs (17)-( 19) to characterise the 
sodium dimer are rather well-known from spectroscopic studies. We 
use here the data of Kusch and Hessel” and obtain OrO1 = 0.2226 K, 
Ovib = 228 K and Gb/kB = 8616 K, these figures corresponding respecti- 
vely to a bond length of 3.079 A, a vibrational frequency equivalent to 
158 cm-’ and a diatomic binding energy of 0.7424 eV. The parameters 
vary only a little from author to author and we have used them 
unchanged here. Because Or,, and Ovib are much smaller than the 
temperatures of interest in the present work, we are amply justified in 
using the high temperature forms shown in Eq. (19). 

6 RESULTS 

We show first, in Figures 3 and 4, the saturated vapour pressure 
calculated as a function of temperature. It is clear from Figure 3 that the 
experimental curve is well described, in order of magnitude, over the 
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Figure 3 Saturated vapour pressure (logarithmic scale) versus temperature. The experi- 
mental curve shown is given by the formula of Browning and Potter,I8 which was fitted 
to the measured data. 

- - -  
c -  

whole range from 400K to 2400 K and, in fact, the quantitative 
agreement is excellent, as Table 2 indicates, from the melting point up 
to well beyond the 1 atm. boiling temperature. However, as is seen 
clearly in Figure 4, a small discrepancy then sets in which becomes quite 
significant at the highest temperatures of interest. 

Next, we indicate in Figure 5 the liquid-vapour density coexistence 
curve. It is clear from this diagram (see also Table 2) that the liquid 
density is given very accurately from the melting temperature up to very 
high temperatures; indeed above 2000 K the theory looks to be more 

Figure 4 Saturated vapour pressure versus temperature. As in Figure 3, except linear 
scale used for the pressure. 
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191 LIQUID-VAPOUR COEXISTENCE 

Table 2 
temperatures (near melting and near 1 atm. boiling). 

Liquid-vapour coexistence characteristics at two 

~ ~- 

T/K Saturated vapour Liquid 
pressure/M Pa density/kgrn ~ 

Calc. Expt. Calc. Expt. 

400 0.213 x 0.211 x 911 920 
1200 0.149 0.149 732 731 

reliable than the experimental data. It is not so easy to assess the quality 
of the comparison between theory and experiment for the vapour on 
this graph, so we show some of the same data on an expanded scale in 
Figure 6. It is clear from this plot that, as for the pressure in Figure 4, a 
slight disparity sets in and develops as the temperature is raised above 
the 1 atm. boiling point. 

A valuable method for obtaining insight into the above results is to 
plot the so-called compressibility factor P$,/k, T against temperature 
and this is done in Figure 7. According to Eqs (22) and (24), 

z, P$,/k,T = ( N , / N )  + ( N , / N )  (28) 
and the theoretically computed component parts of this equation are 
also displayed. It is evident that below - 1230 K, our theory produces 
too few particles (a particle for this purpose being either a monomer or 
a dimer) while above this temperature the opposite obtains. 

+ s t o n e  s t  a1" 
A D , I I O ~  e t  el ' '  
o P e t i o t  8 se i le r ' '  

.,,_ny,.p:"-",:-- - - - Y -  
2 4 0 0  

T / K  
400 800 1200 I600 2000 

Figure5 Density versus temperature of liquid and vapour Na at coexistence. The 
experimental data (indicated and referenced on the figure) were taken from the 
summary graph given by Ohse et 
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5 

4 

3 

2 

1 

0 

S. M. OSMAN AND W. H. YOUNG . 
T I K  

1 2 0 0  1 3 0 0  1 4 0 0  1 5 0 0  1 6 0 0  1 7 0 0  

Figure 6 Density versus temperature of Na vapour at coexistence. Present theory is 
compared with the measured data of Stone et ~ 1 . ~ ~  

- -_ _ -  ---- - - - 
. 

. . 

1.0 ~ 

. 
.. .. 

0.8 . 
- .  - . -  

N, I N  

i 

- 
- ,  

L, 

0.2 - 
N I I N  

, - . -  . -  .- . -  - - 
. -  - . -  - - T I K  

1 2 0 0  1 4 0 0  1 6 0 0  

0.0 1 
4 0 0  800 800 1000 

Figure 7 Vapour state compressibility factor 2, = P,R,/k,T versus temperature. Ex- 
perimental results, from Hultgren et al.’ are consistent with Figures 4 and 6. 
Theoretical results are also consistent with Figures 4 and 6. The monomer and dimer 
contributions, N , / N  and N J N ,  calculated according to Eq. (22) are also shown. 
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LIQUID-VAPOUR COEXISTENCE 193 

7 CONCLUSIONS 

From the evidence of Figure 5, the NFE theory of the liquid appears to 
be valid up to about 2300 K. This is only some 200 K below the critical 
temperature and corresponds to about 1.8 times the critical density. 
Such a result is entirely in keeping with the experimental work by Franz 
et a1.24 on Rb. The effect of the finite (but small) vapour pressure is not 
easy to ascertain, since there are no observations in the region which 
matters most for forming a judgement. Nevertheless, our analysis in 
Ref. 12 suggests that some benefit has been obtained by allowing for 
this effect. 

The gas theory is, at present, in less satisfactory form and this is most 
clearly revealed in Figure 7. Evidently the monomer-dimer model is an 
improvement on the ideal case but too few monomers result at lower 
temperatures and too many at higher temperatures. This has its effect 
on the pressure but the consequences only become serious as the 
highest temperatures are approached (Figures 4 and 6). Our theoretical 
results for the density in this region (Figure 6) produces an agreement 
with the measurements of Petiot and Seiler22 but we would prefer to 
reserve judgement on the weight to be attached to this until a better 
description of the vapour is available to us. 
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